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The kinetics of the irreversible adsorption of particles that undergo a surface induced conformational
change may be modeled as a random sequential adsorption of spreading disks. We analyze this process
by expanding the governing kinetic equations in a power series of the particle density. In the limit where
particles spread instantaneously upon adsorption, the coefficients in the density expansion depend only
upon the particle spreading magnitude =. In the general case of a finite spreading rate, a renormaliza-
tion is performed to improve the efficiency of the expansion and the coefficients become functions of =
and a new variable {=pK, where p is the density and K is the relative rate of particle spreading. While
they are most accurate at low to moderate densities, these expressions may be linked to the known
asymptotic kinetics via interpolation formulas to give an approximate solution over the entire density re-
gime, in good agreement with simulation and experiment.

PACS number(s): 68.45.Da, 05.20.—y, 05.70.Ln

I. INTRODUCTION

The adsorption of macromolecules such as proteins
[1-7] and colloids [8,9] is often irreversible, that is,
desorption and surface diffusion are slow compared to the
rate of adsorption. In these cases, the random sequential
adsorption (RSA) model [10-13] may apply. In RSA,
particles are represented as rigid objects that deposit
sequentially at random positions onto a surface. If over-
lap with a previously placed particle occurs, the attempt
is rejected and a new trial position is chosen. This pro-
cess continues until no additional particles may be placed
on the surface. This simple model has been shown to de-
scribe many features of the adsorption of colloids [8] and
proteins [5-7].

An additional aspect of irreversible adsorption ob-
served experimentally, yet not accounted for in simple
RSA models, is the possibility of a particle conformation-
al change following adsorption. Recently, we have stud-
ied a RSA model that accounts for a surface induced par-
ticle conformational change in the form of a change in
particle size following adsorption (i.e., spreading) [14,15].
In one dimension, this model is exactly solvable in the
case where the spreading is instantaneous [14]. In two di-
mensions, computer simulation is required [15]. The pur-
pose of this work is to (i) analyze the kinetics of the two-
dimensional case via a series expansion in powers of the
density and (ii) to combine this expansion with the known
asymptotic behavior towards saturation so as to have an
approximate description valid over the entire coverage
range. Such a method has already been applied to simple
RSA [10,16-18] and to more complicated deposition
processes [19-21]. The simple formulas that result may
be used to investigate the main kinetic fecatures for a wide
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range of physical parameters, thus facilitating compar-
ison with experimental results [5].

The kinetic model of spreading disks presented here is
a modification of the standard random sequential adsorp-
tion model. In the former, disks of diameter o, (hereaf-
ter referred to as a particles) are deposited randomly and
sequentially onto a surface at a rate k,c per unit area (the
¢ explicitly represents the particle concentration in the
bulk phase). Only incoming a particles that do not over-
lap any preadsorbed particles are allowed to remain on
the surface. Once adsorbed, an a particle will spread
discretely and symmetrically to a larger diameter oz at a
rate k,, provided that the expansion does not cause over-
lap with any other particles. If the expansion would re-
sult in overlap, the original particle remains forever an a
particle. If the expansion is successful, the particle is
now said to have changed state to become a 8 particle.
In either case, the particle position on the surface
remains fixed for the entire run. We have recently re-
ported extensive numerical simulations of this model
[15]; throughout this work, results of the density expan-
sion approach will be compared to these “exact” results.

We note that when k; is zero, one recovers the stan-
dard RSA model whose short time kinetics density ex-
pansion has appeared elsewhere [10,11,16]. In Sec. IT of
this work we will discuss the special case where k; is
infinite. In Sec. III we will treat the general case when k;
is finite and nonzero. A formalism for interpolating be-
tween the low- and high-density regimes will be given in
Sec. IV and a comparison with experimental results in
Sec. V.

II. INSTANTANEOUS SPREADING

When the spreading is instantaneous, the governing
equations for the kinetics of adsorption of a and B parti-

785 ©1996 The American Physical Society



786 VAN TASSEL, TALBOT, TARJUS, AND VIOT 53

cles may be obtained by considering the changes intro-
duced by the flux of incoming particles during an
infinitesimal interval of time df. The density of a parti-
cles p, increases due to particles landing at positions that
satisfy two criteria: (i) there is no overlap with pread-
sorbed particles and (ii) there is not enough additional
space for particle spreading. Similarly, the density of 8
particles pg increases due to particles that land in posi-
tions with space enough to spread. The governing equa-
tions may be written as

dp

= —kac(Polp, 2) = Pglp,2)) 1
%s =k, cP5p, 2
at =k cPpp,2), )

where p, is the number density of A particles (where A=«
or ), p=p,+pg is the total number density, and k,c is
the rate of adsorption per unit area. ®, is the available
surface function [11,16] for a A particle that represents
the fractional surface available for adsorption of a A par-
ticle. More specifically, it is equal to the probability that
a point chosen at random on the surface will be at least a

distance (0, +o0,)/2 from the center of each y particle,
where ¥ and A=a or 8. This function will in general de-
pend upon the total density p and the ratio of particles
sizes = (=0g/0,). Note that in all irreversible adsorp-
tion processes, the total density of adsorbed particles p is
a monotonically increasing function of time, so one can
consider either p or ¢ as the relevant variable to describe
the evolution of the system.

It is convenient to recast Egs. (1) and (2) in dimension-
less form
g

e =0, (p*,2)—Dglp*,2) , (3)
ap*

where p} =(m02/4)p, and t*=k,c(mo?/4)t. Hereafter,

we will drop the asterisks, but all quantities will remain
dimensionless.

The available surface function may be written as a sum
of contributions involving the various particle density
distributions in a manner similar to that introduced in
Ref. [11] for the RSA of disks:

@, (p,2)= \5a 's fdz dlsgtsgt VIS fiG S 4 "‘fi”(ﬁsa+s3+1)
S »S B
(s, +sg)
XPoa-pp (25 syt s, 42, 0,5, 55+ 15p,2) . (5)

In Eq. (5), the particle positions r; have been replaced by
i and use has been made of the Mayer functions, which
for hard disks take the form f}'=—1 if r,; <o, and

A . s s ) v 4

G7=0  if  r;Zo0y,. Pac-- 3 (2, ... 5,F s,
+2,...,5,+s53+1;p,2) denotes the density function as-
sociated with finding s, particles of species a centered at
2,...,5,+1 and sg particles of species B centered at
SqF2,...,5,+sg+ 1. The first term (s, =sz=0) is tak-
en to be unity. Each successive term accounts for the
blockage of a newly placed particle (at position 1) by s, a
particles and sg B particles simultaneously. The form of
the Mayer functions ensures that the blocking particles
are within the required proximity to position 1. The sign
of the product of Mayer functions may be understood by
the following example. When s, +sz;=1, the product of
Mayer functions will be negative and the integral ac-
counts for the decrease in fractional area accessible to ad-
sorption due to blockage by the presence of single parti-
cles. When s,+s;=2, the product is positive and
corrects for the overcounting associated with regions on
the surface blocked by pairs. In general, the term associ-
ated with blockage by n +1 particles accounts for the
overcounting of the term associated with the blockage by
n particles. Note that because of the finite number of
neighboring particles that can be placed around a given

particle, the sum in Eq. (5) has a finite number of nonzero
terms.

The goal is to expand Eq. (5) up to third order in densi-
ty. Clearly, only terms where s, +55 <3 will be required.
We begin by expanding the available surface function and
the partial, many-body densities in terms of the total
one-body density (p=p,+pp) as

B0 ) =1+ 3 a (" +0(p") , ©)
n=1
Sl (1, 5q 5P 3)

3
=3 42 BB (1, L, m2)p"+0(Y) . (D)
n=1

It is clear that 42% P =0 for n <s,+sg. Since both
P, and Dp equal 1+0(p), Egs. (3) and (4) imply that
pg=p+O0(p?) and p,= O(pz). This can be understood
physically by considering that the adsorption of a parti-
cles is a “two-body” process in that it requires at least
one preadsorbed particle to prevent its spreading. We
thus have 49=0, 4A#=1,and 47=—A4Ffforn>1. To
obtain the particle densities up to second order in p, we
differentiate p, in Eq. (7) with respect to time and equate
it to Eq. (3):
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9p,
;’t $p+0(p1)= [d2fE—fEp+0p>), ®
Ag=—Al=1[axr—r%), )

where we now drop the explicit 2 dependence of the
coefficients.

To obtain the pair densities .to lowest (second) order,
we consider the following kinetic equation for the evolu-

J

tion of the B-B pair density, which generalizes the
Kirkwood-Salsburg hierarchy derived for standard RSA
[11]:

ZZ(DBB(I,ZO) 5 (10)

where ®gg is a mixed one-particle, one-cavity density
function whose expression is a special case of the formula

P,,(1,2°)= (1+f%) 3 rd(sgtsgt2)fh 'flf&aﬂ)f‘zt@aﬂ) e 'fgga+s3+2>
s sB=0
(
X P ol (1,3, s +2, s tspt20,2) (11)
[
where A=a,f3 and p=a,. Equations (10) and (11) can (p (1,2)= 2Dy 1,2°)— (1,2°)) (14)

be interpreted as follows. To create a new pair of 3 parti-
cles at positions 1 and 2, one must have both a preexist-
ing B particle centered on 1 and a cavity centered on 2
available for the insertion of a 8 particle or, equivalently,
a cavity centered on 1 and a preexisting [ particle cen-
tered on 2. @, ( 1,2°) is then the probability density asso-
ciated with simultaneously finding a A particle at 1 and a
cavity large enough to house a u particle at 2 (the super-
script o indicates a cavity). The second equality of Eq.
(10) results from the symmetry of these functions with
respect to the choice of position for a given species. Ex-
panding both sides of Eq. (10) to first order in density and
employing the definitions in Egs. (7) and (11), we obtain

AP,2)=1+f% . (12)

Similar equations exist for the time evolution of the
other pair densities

whose solutions to first order yield the coefficients

B(1,2)=LfE—r%), (15)
A$%(1,2)=0. (16)

Equation (16) illustrates that the existence of a pair of a
particles requires the presence of at least three particles;
indeed, to prevent both a particles from spreading, a
preadsorbed third particle must have been present.

We now have enough information to obtain the third-
order coefficients of the various pair densities by expand-

(p )(1,2))= (D,5(1,2°) +Pp,(2,1°) = Dgg(2,1°)) , ing Egs. (10), (13), and (14) up to second order in p and
employing the definitions in Egs. (7) and (11). This yields
(13)  the coefficients
J
AP1=10+7%) [ [a3 BB —eas+2 a3 sy, 17
AP(1,2)=1(1+ %) [%fd3f§§(f B +1 a3 posre—r)+ fd3f‘1’3f§3‘9]
—1(1+158) [%fd3f7§(f‘2’§" 8)+ [d3 ror 3A“} (18)

A1) =2(f G —fB) A+ 101+ 1) [d3 rE (%

— B =11+ [d3 B~ . (19)
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We now expand Eq. (8) to second order to obtain

Py
ot

Matching the second-order terms from Egs. (5) and (20),
we find

A5=145 [a2rE—4r g+ 1)
+ifa2a3rgrg —rErHa+r)
+1fa2d3rgrg—rErig—rE . @

=2A4%p+(2A4%a,,+3A4%)p*+0(p%) . (20)

All that remains is to find the triplet densities to lowest
(third) order. The governing kinetic equations read

9 -
3 Poe(1,2,3)=3®g5(1,2,3%) (22)

3
Epﬁfgﬁ( 1,2,3)=2®44(1,2,3°)

FDpga(2,3,10)— Dpgp(2,3,19,  (23)

%pgﬁﬂ( 1,2,3)=®,,4(1,2,3°)
F20,5,(1,3,29)—20,44(1,3,2°),  (24)
%pﬁfga( 1,2,3)=3®,0,(1,2,3°)—30,,4(1,2,3°) . (25)

In the above expressions, P;,..(1,2, 3°), where A, u, and v
denote a or B, represents the probability density associat-
ed with having a A particle at position 1 and a u particle
at position 2 and a cavity large enough to accommodate a
v particle at position 3. These functions can be expressed
in a similar manner as the pair terms in Eq. (11). Ex-
panding both sides of Egs. (22)—(25) to second order us-
ing the definitions of Egs. (7) and (11) and the coefficients
of Egs. (12), (15), and (16), we obtain the coefficients

AFP,2,3) =0+ )+ E)a+r%) (26)
A$PP(1,2,3)=—(1+ )1+ )1+ f55)

X[3UE+rE+3 BB, e
A5°8(1,2,3)=1(1+ )1+ )1+ f55)
X2/ BfE+BSE+E)

+2rBrBrE, (28)

A9°%(1,2,3)=0 . 29)

The last of these equations implies that the presence of
triplets of a particles will require at least a four-body in-
teraction.

We now have all the coefficients needed to expand @,
and ®g to third order in density. Substituting the known
expansions of the densities in Eq. (8) into Eq. (5), we ob-
tain the desired coefficients. These appear in the Appen-
dix.

Figure 1 displays the density expansion of the partial
and total densities to second and third order versus time
for 2=1.1 and 1.5. The kinetics is rather well described

with the third-order density expansion at short times.
For longer times, the total density may approach an
asymptotic value (as when ==1.1) or may diverge (as
when 2=1.5). We note that, in general, the range of va-
lidity decreases with increasing =. Additionally, for
2=1.5, the second-order expansion has a greater range
of accuracy than the third-order expansion, indicating a
fortuitous cancellation between three- and higher-body
effects even at intermediate coverages.

III. FINITE SPREADING RATE

When the spreading rate is finite, the (dimensionless)
kinetic equations take the form

%Pa _

at =®,(p,2,K; )_Kspa\yaﬂ(p’z’Ks ), (30)
9
_ép?ﬁ'szpawaB(p)E’Ks) s 31

py(t)

zZ=1.5

FIG. 1. Second- (short dashed line) and third- (dashed line)
order density expansion of the reduced total and partial densi-
ties as function of reduced time for instantaneous spreading
(Kg— + o) with (a) 2=1.1 and (b) =1.5. Also shown are
simulation results (solid line).
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where W, is the probability for a given a particle on the
surface to have space available to spread, that is, to be at
least a distance (0,4 03)/2 from all other a particles and
at least a distance o from all B particles; it will in gen-
eral be a function of = and K|, where K is defined as

ks
—. (32)

o
a
k,c

4

K,=

This general case differs from the case of instantaneous
spreading [K;— + o in Egs. (1) and (2)] in that ®g has
been replaced in Egs. (30) and (31) by K;p,¥,5. This
term accounts for the fact that all a particles on the sur-
face (not only the last ones inserted) may spread during
the infinitesimal interval of time between ¢ and t +dt. We
seek a density expansion of both ®, and the product
Po¥op The former is defined as in Egs. (5) and (6), the
latter by

PaYoplp, 2, K )= E 'sﬁ Jaz- - dis st 1)p0 - R A TIERIVA (VRN A (SRS
a,.Y
Xpae Bl (1, st s 2, . suFsgt 130, 3,K,) (33)
[
The one-body, two-body, etc., densities can be expanded A _
in powers of the total density as in Eq. (8), but now the “(§)+§ ac 1-£47(5), (39)

coefficients 42* " "PP""" are functions of both 3 and K.

One must recover the instantaneous spreading case in
the limit when K;— . Because at short times, terms
such as p K, remain finite even as K;— o, we choose to
renormalize the kinetic equations by changing variables
from (p,K) to (p,&), where {=pK,. This change of vari-
ables reexpresses the kinetic equation as

9Pq . | | & ||8p
ar |, a jolp at |k,
=000~ | = plluglp,l), (34
where
3p, -
S| = 3 nazepn
ot 4 n=1
= AU H[ ANy (O)+2AEp+ -,
(35)
3, | = 84°
= : (36)
ag P n=1 ag p
—afl] —d,=1+ S a,(p", (37
at K, n=1
PVag=pat 3 ba(Ep" @8
n=2

where the explicit dependence of the coefficients on the
new variable £ (but not that on X) is noted. To zeroth or-
der in density, Eq. (34) gives

whose solution is A¢(£)=(1—e %)/L. Notice that as
{—> o (fast spreading), 4§¥—0 and p,~p?, consistent
with the results obtained above for instantaneous spread-
ing.

To first order in density, Eq. (34) gives

. . dAS 34¢
AT()ag () +2A4F(E)+5—— 3¢ t8ay(8)— ot
=a, (E)—CALE)—Eby(E) . (40)

To solve Eq. (40), we need values for a,;(£) and b,(§).
The former may be obtained from a first-order expansion
of ®, using the known value of 4 §(&), which leads to

o= [d2fE+440 [daf5—r8). @

The latter can be obtained from the density expansion of
Eq. (38), but this requires knowledge of the leading
coefficients to the pair densities.

Generalizing the results obtained for the instantaneous
spreading case, the kinetic equation for the three needed
pair densities may be written as

9
o PEN1,2)=2D,,(1,2°)— 2K p{2)(1,2)¥,,4(1,2°) , (42)
3

atp(,,,(l ,2)=Dp,(2,1°)+ K pl2)(1,2)W,04(1,2°)
— K p3)(1,2)Wg,5(2,1°) , 43)

ip,, (1,2)=2K,p2(1,2)W 552, 1°) , (44)

where ®,,,(1,2°) is defined as in Eq. (11) and
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L2V, (1,2 =(1+ £ 3) (satspt2)f 55 fB 42)
Sq SB_O
(s, +sg+2)
ng(%a+3) f2 (s +SB+2)pkaa BB.B (1’ ceer8g +sB+2;p’E’§) 45)

is the probability density associated with finding a parti-
cle of type A at position 1 and an a particle at position 2,
which has enough space to spread and become a 3 parti-
cle. Renormalization of Egs. (42)-(44) by introducing
the variable & gives

First, we will consider Eq. (46), which to first order in
density yields

(1(1

249%(1,2;6)+¢ g

=21+ %) A%(E)

w2 | | (@20 | (¢, 2 450,20
ot ¢ as olp | “ (49)
The presence of the Mayer function implies that 4§% i
_ o~ € 12 o p yer function implies that 45% is a
2®,4(1,2%) =2 p Paal1,2)Waep(1,2°),  (46) piecewise function, which may be written in a compact
form as
3piH(1,2) 3pp(1,2) | [¢ ®
a
a e % Jolp A57(1,2;0)
=®p,(2,1°)+ ’f? Paa(1,2)¥ap(1,2°) =<1+f‘1’£’>§[ —fB(E+et—1)
—p2N1,2)Wg,4(2,1°) , 47)
o pab FA+FE) A+ 1e%—e 6] . (50
3ppa(1,2) P12 | (¢ o
ot ¢ s olp | © . . . .
Notice that for r{, <o, A5 vanishes since no pair of
Y overlapping particles can exist. The single solutions to
2 p paB( 1,2)Wgap(2,1°) . (48) Egs. (47) and (48) may be obtained in the same way:
J
Agﬁ(1,z;g)=<1+f?§>§1 [~ B~ Lt+e E—te D)+ (1+fENE—14+2e " —e b —e )], (51)
AB(1L, 20 =(1+ ) L (42—t L —e Lo S+ de %) . (52)

When {— + o, corresponding to instantaneous spread-
ing, Eqs. (50)-(52) properly reduce to Egs. (12), (15), and
(16).

The coefficient b, of the expansion of p, ¥,z Eq. (38),
is then

by (&)= [d2 B A5°(1,2:6)+ [d2 fA5P(1,2;¢)

(53)
and the solution to Eq. (40) is

A‘2’(§)=? (—ig%e~S+t—1+e 6 [d2f P
+(de f—3—e %420 [d2f 55— )
+(1e2—f+1—ef+Le i+ 1e )

X [d2fE—r8) (. (54)

[

We now have enough information to obtain a (&) of
the expansion of ®:

A5 [dafig—
+1 [d2d3 FEFEA592,3;0)

(%) g

+1 [d2d3 fErgA8(2,3;¢)

+ [d2d3 Fgr#A5°(2,3,0) , (55)

which gives us the expansion of the kinetics up to second
order in density. We point out that ~1l the integrale ap-
pearing in the various coefficients up \. ~ond order can
be determined analytically or can be reduccu to a single
straightforward integration.

Figure 2 shows the low-density expansion along with
the simulation data for moderate (K;=1) and fast
(K;=10) spreading rates. Notice that the deviation of
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the low-density expansion from the simulation data
occurs at a smaller density for larger values of K;. As ob-
served for the case of an infinite spreading rate, an
asymptotic value is reached by the total density while the
partial densities diverge. Finally, the range of validity
was observed to decrease with increasing =.

IV. INTERPOLATION SCHEMES

We now possess a solution for the random sequential
adsorption of spreading disks accurate at low density.
The high-density, asymptotic regime of the standard
RSA of disks has been analyzed using geometrical and
probabilistic arguments and it has been shown that the
approach to saturation for the RSA with spreading prob-
lem is the same as for standard RSA [15], that is, at long
times

J _
Lt~ [p,—p(O], (56)
ot
a)
0.5 T T T
=15
04 F Ks=1 i
p
0.3 | e L
= -~
Iy
0.2 + - ‘~‘~\ -
p(l
0.1 | oy == i
0.0 ! 1 L
0.0 1.0 2.0 3.0 4.0
t
b)
0.5 T T T

o,

FIG. 2. Second-order density expansion (dashed line) of the
reduced total and partial densities as functions of reduced time
for 2=1.5 and (a) K; =1 and (b) K, =10. Also shown are simu-
lation results (solid line).

where p, is the saturation density.

Unlike the low- and high-density limits, the intermedi-
ate loading regime cannot be simply analyzed due to both
the importance of many-body effects and the lack of a
simple structure for the available surface as exists close to
saturation. In order to obtain an analytical expression
for the entire range of density, we propose here two inter-
polation formulas that match the density expansion at
low to intermediate coverage and the known asymptotic
kinetics at high coverage. This procedure was used for
standard RSA [16,22], where it was shown to provide an
accurate approximation.

A. Direct method

In the case of instantaneous spreading, we now possess
the low-density expansion up third order. We may then
use the following interpolation formula, first used for
standard RSA [22]:

, (57
ot 14+b;x+b,yx2

where x =p/p,,. The numerator in Eq. (57) provides the
correct long time behavior. An expansion of the denomi-
nator can be performed and the unknowns b, b,, and p,
obtained from the known coefficients a,, a,,, and a,; to
provide the correct short time behavior.

We can also write an interpolation formula for the to-
tal surface coverage

8 _  x1-x)
9t l+c;x+cx?teyx?

, (58)

where 9=pa+22p,3 (recall that the densities are in di-
mensionless form). The leading term of Eq. (58) is not
unity but rather 32, reflecting the area of 8 particles that
fill the surface initially in the limit of infinitely fast
spreading. The three coefficients can be solved in terms
of the coefficients of 060/0¢, which have the form
a,; +(2*—1)ag, and the condition that as  — oo (x —1),
dp /3t and 86/0t approach zero in a similar fashion, as
shown in Ref. [15]:
1 +C1 +C2 +C3

I+by by =—— . (59)

Equations (57) and (58) can be integrated numerically in
time to yield p(¢) and 6(¢) and from them the partial
densities p,(1)=(22—1)"'[Z%()—6(1)] and pgt)
=(22=-1)"'[6(£)—p(1)].

Figure 3 compares results of the above interpolation
formula to results from simulation. Notice that the
agreement with simulation is good and the interpolation
method improves significantly the approximation provid-
ed solely by the low-density expansion to third order.
Figure 4 shows the total density, the partial densities, and
the coverage at saturation predicted by the direct inter-
polation formula along with those calculated via simula-
tion. Considering the difficulty in predicting saturation
values from low-density series expansions, the agreement
is quite satisfactory except when X approaches unity,
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where the predicted curve does not reproduce the nonan-
alytic behavior (see Ref. [15]). In the finite spreading
case, the direct interpolation scheme is inefficient due to
our having calculated the low-density expansion only to
second order.

B. Effective area method

To treat the general case of a finite rate of spreading
(the effective area interpolation scheme is equally applica-
ble to the case of infinitely fast spreading, but will be in-
troduced here in the context of a finite rate of spreading,
that is, the explicit dependence on the variable § will be
noted), we propose to map the kinetics of adsorption of
the RSA with spreading model onto the solution for stan-
dard RSA by defining an effective particle area a 4(p,§),
from which one can write an effective surface coverage
O.4p,5)=pa(p,5). The idea is that a.(p,5) changes
with p in such a way that at all times or at all densities
@, (p,£) from Eq. (34) equals ®*(04(p,£)), where

p(Y

=15

p,(1

FIG. 3. Direct interpolation calculation (dashed line) of the
reduced total and partial densities as functions of reduced time
for instantaneous spreading (K, — + o) with (a) £=1.1 and (b)
3=1.5. Also shown are simulation results (solid line).
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FIG. 4. Direct (dotted line) interpolation calculation of the
total density, the coverage, and the partial densities at satura-
tion for instantaneous spreading as functions of spreading mag-
nitude. Also shown are simulation results (solid line).

®9(9)is the available surface function for standard RSA.
Such a procedure is suggested by the experimental results
of Ramsden [6] in which the data for the adsorption of
the protein transferring are analyzed in terms of kinetic
equations for the standard RSA of disks, but the average
particle area (an adjustable parameter) changes with k,c,
i.e., with bulk protein concentration (see also Ref. [5]).
Since we are looking for an approximate interpolation
formula, we use for ®°(0) one of its very accurate ap-
proximants, e.g., [16]

(1—y)}

0(9)= ) 3>
1+d,y+d,y“+d;y

(60)

where y=60/6'9 and 69 equals the known saturation
coverage for circular disks (i.e., 0.547 ...) and d,, d,,
and d; are determined from the fist three known
coefficients of the density expansion for the standard
RSA of disks.

Knowing the low coverage expansion of ®°(0) and
the low density of ®,(p,{) up to second order and replac-
ing 0 by pa +(p,{), one can obtain the low-density expan-
sion of a.4(p,§) for fixed § up to first order. It is con-
venient to express a.4(p,§) as a simple Padé ratio of poly-
nomials

aemo(5)

T+aum(©p ’ €1

aea(p,§)=
where the coefficients a.g and a4 are expressed in terms
of the coefficients a,;(£) and a,,(&) of Egs. (41) and (55)
and the known first- and second-order -coefficients

a'\?,a'? of the coverage expansion of ®©(9) as
a,(8)
aeﬂ0(§)= al(o) ’ (62)
1

a(ZO)aal(g) _ aaz(é)
a(lm2 au(§)

The saturation coverage p, may be determined via an

a.m(8)= (63)
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iterative solution of the relation

9(0) 6(0)
L = , (64)
p Aei(Po)  Aego(60)— 0D (6o)

where {, =K p,. Integration of Eq. (60) gives the time
evolution of the total number density. Note that the
above procedure ensures that the asymptotic approach
towards saturation goes properly as p, —p(t)~t!/%

A comparison of the above interpolation formula with
simulation and experimental data is shown in Figs. 5-8
and is discussed below. In order to go beyond the
description of the evolution of the total density and
derive approximations for the partial densities, one may
treat the kinetics of the total coverage in the same spirit
as done above for the total density. The time evolution of
the total surface coverage may be obtained by first noting
that

80 _303p _ 90 _ a0
3t dp ot a(p,&) 5 =a(p)PAac(p,E)p) (65)

where all partial derivatives are performed by taking K|
and § constant and where @(p,§) is the average area of
particles that land on the surface when the surface densi-
ty is p; therefore, unlike the mapping variable a 4(p,&), it
has a quantitative physical interpretation. To accelerate
the convergence of the series in p, we use Padé approxi-
mants for @(p,§), more specifically,
a,(8)

a(p,£)= , (66)
P oo,

where @y({) and @,;(§) are obtained from the low-density
expansion and @,(§) is adjusted to satisfy the constraint
a(§,=pK;)=1, which ensures that 36/d¢ and dp/dt
are asymptotically equal when ¢z — + o [15]:

@o(8)=a,(8)+(Z2—1)ag (L), (67)
aa1(§)+(22—1)031(§)

a = - , 68
T =)= T Dag( (68)
[ein(§)—0Da g (§)12[@o(£)— 1]
a,(8)= (0)y2
(65"
_pl0)
_laam(§)—0%aun ()] )
6'Y

where /9=0.547 - - - . Clearly, other forms of Eq. (66),
i.e., different Padé polynomial ratios, could be used as
well. Any choice, though, must go to unity at long times
and, when multiplied by Jp/dt¢, reproduce the low-
density expansion of 96 /0t.

The time evolution of the total and partial densities
predicted by the effective area interpolation scheme and
calculated by simulation are shown for the case of instan-
taneous spreading (Fig. 5) and for finite spreading rates
(Figs. 6 and 7). We observe excellent agreement between
the effective area method’s predicted total number densi-
ty (which also happens to be the experimentally accessi-
ble variable) with simulation. For the partial densities,

the predictions are less accurate. However, of particular
interest is the ability of the theory to capture the non-
monotonic behavior of the a particles at a large (but
finite) value of K. For smaller K, this maxima occurs at
a higher density and so cannot be recovered by this low-
density expansion technique.

Figure 8 shows the total density, the coverage, and the
partial densities predicted by the effective area method at
saturation as a function of spreading magnitude along
with those calculated via simulation, for several spread-
ing rates. Except in the limit of £—1, we observe
reasonably good agreement for the total density and the
partial densities at K, =10 and K; = . The partial den-
sities have qualitatively correct trends, but assume in-
correct values in the limit of £—1. Despite requiring
coefficients only to second order, the effective area inter-
polation scheme is, in the case of instantaneous spread-
ing, at least as accurate as the direct interpolation
scheme. For K =1, the partial densities are in error for
the reasons cited above. Figure 9 shows the effective area

0.5 T T T

=11

p, (1)

0.5 T T T

z=1.5
04 8

p, (1

FIG. 5. Effective area interpolation calculation (dashed line)
of the reduced total and partial densities as functions of reduced
time for K;= o and (a) £=1.1 and (b) 2=1.5. Also shown are
simulation results (solid line).
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a.4(p,6=K,p) and the average area of particles landing
on the surface at density p, @(p,§), as a function of densi-
ty for different values of K;. The nonmonotonic behavior
of @ for finite spreading is a consequence of the process
that fixes two limits: at short times, adsorbing particles
have not had sufficient time to spread, and at long times,
the surface is too crowded to allow for any spreading. In
both limits, @(p=0,{)=1. Note that discontinuities exist
for both a4 and @ upon going form a finite to infinite
spreading rate; a.; and @ approach unity as p—0 for
finite K, and (2+1)?/4 and 32, respectively, for infinite
K;.

V. COMPARISON WITH EXPERIMENT

Recently, optical methods [6] have been developed that
allow for the accurate measurement of protein adsorption
kinetics and are thus able to discriminate between ad-
sorption models. In Fig. 10 we compare the rates of ad-
sorption versus surface density predicted by the effective

a)
0-5 T T T
$=1.05 e—1
0.4 - K,=1 ”,—_.—-- B
P
0-3 L - — — L B
€ -~
& i
02 [ 0 1
0.1 P — 3
/”
0'oo.o 1.0 2.0 3.0 4.0
t
b)
0.5 . . .
0.4
0.3
=
0.2
0.1
0'oo.o 1.0 2.0 3.0 4.0

FIG. 6. Effective area interpolation calculation (dashed line)
of the reduced total and partial densities as functions of reduced
time for £=1.05 and (a) K;=1 and (b) K;=10. Also shown are
simulation results (solid line).

area interpolation method with the experimental results
for the protein transferrin [5] for two different bulk con-
centrations. The experimental comparison requires four
parameters: the rate of deposition k,, the particle area
per mass a /m, and the model parameters = and K,. We
have not performed a best fit but rather have chosen pa-
rameters that are consistent with their known approxi-
mate values and with comparisons made in Ref. [15].
Table I summarizes the parameter choice. Note that the
same parameters are used for both concentrations.

We also present in Fig. 10 the prediction of a
Langmuir-like model, which assumes a trivial surface
blockage for both adsorption and conformational change
[23,24]. It is characterized by the kinetic equations

Py
at

—_ = —_— —32
i Kp (1—p,—2"pg) . (71)

=(1—K,p,)(1—p,—3Z%pp) , (70)

0-5 T T T
=15

.
—

e e

0.3 —_

p(Y)
\

0.2 B

e e e

0.0 1 L I

0.5 T T T

0.4 -

0.3 +

p(t)

pep———
o e ——

prmg———

0.1 - Py J

0.0 L 1 1
0.0 1.0 2.0 3.0 4.0

FIG. 7. Effective area interpolation calculation (dashed line)
of the reduced total and partial densities as functions of reduced
time for £=1.5 and (a) K,=1 and (b) K,=10. Also shown are
simulation results (solid line).
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FIG. 8. Effective area interpolation calculation (dashed line)
of the total density, the coverage, and the partial densities at
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This approach essentially replaces both ®, and ¥4 in
Egs. (30) and (31) by (l—pa—ZZpﬂ). One could also in-
troduce a desorption rate in the Langmuir-like model as
discussed in Ref. [24], but for the present experimental
situation it would be inappropriate since desorption was
shown to be negligible. The result is a rate of adsorption
that exhibits negative curvature, a feature not at all in ac-
cord with the experimental data. In contrast, the ap-
proach presented here clearly accounts for the adsorption

kinetics with positive curvature observed experimentally
(Fig. 10).

VI. CONCLUSION

We present here a theoretical analysis of the kinetics of
the random sequential adsorption of spreading hard disks
using a low-density expansion formalism. When the
spreading rate is infinite, a straightforward expansion

a)
22 ; P
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K =0

a,4(p.K,p)

1.2 + K =10

1.0 : — : —
00 o1 02 03 0.4 0.5

b)
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=oo
s
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a(p,Kp)
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1_0 ,,,,,, U F—— 1 Lo 1

FIG. 9. (a) a.4(p,6=pK;) and (b) @a(p,{=pK;) as functions of
spreading magnitude for different values of K. Note that
discontinuities exist for both a.4(p,pK;) and @(p,pK;) at p=0
upon going from a finite to an infinite spreading rate.
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TABLE I. Parameters used in the experimental comparison of Fig. 10. Parameters were chosen to
provide a good fit between the effective area interpolation model and experiment and to be in accord
with previous estimates. The same parameters were used to compare the Langmuir model of Egs. (70)
and (71), except that a/m values of 1.5 and 1.7 cm?/ng were required to fit the Langmuir model at

¢=9.4 and 20 ug/cm?, respectively.

Parameter Chosen value Estimated value and source
k, 1.4X10™* cm/s 1.09X 107* cm/s as calculated
by the relation of Léveque [25]
a/m 1.4 cm?/ng 1.4-1.5 cm?/ng as estimated via experiment [5]
) 1.6 1.6 as given by the best fit
in a previous experimental comparison [15]
K, 20 between 0.3 and 30 as estimated via experiment [5]

may be performed, as was done for standard RSA [11].
When the spreading rate is finite, a renormalization is re-
quired and the coefficients can be obtained as the solu-
tions to first-order differential equations. Interpolation
formulas may be used to connect the low-density regime
to the known asymptotic behavior to predict the total
and partial densities accurately at all times. This
represents a good approximate solution to a complicated
nonequilibrium statistical mechanical problem involving
surface exclusion and time-dependent surface structural
relaxation. It also provides tractable analytical formulas
to interpret experimental data on protein adsorption
when desorption from the surface is negligible.
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APPENDIX

The form of the coefficients of the density expansion of
@, are given as
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FIG. 10. Rate of adsorption as a function of surface density predicted by the effective area interpolation model (solid line), the
Langmuir-with-spreading model (dashed line) [25], and experimental results for the protein transferrin (data points) [5]. The theoreti-
cal results have been converted to experimental units via the reported area per adsorbed transferrin [5] and by matching the rate of
deposition at low coverage. Experimental bulk protein concentrations are 9.4 and 20 ug/cm’. Parameters used are discussed in

Table I1.
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ay=[d2f}¥, (A1)
ay =% [d2d3(rig =g -t +1 [azas rrifa+rg)+1 fazas risrifus — %), (A2)
a3 =1 [d2d3da(fis — DG -G —ar B +r8+ B —rBriha+rg)
HUESE B UE -]

+4 [ d2d3a4 £ — s — 8+ RO+ 5O — B — RO+ L — 18]

+ [a2a3da pEr RO+ G LUE—r B =1 —r B+ %%

+ [d2a3a4 £ RILrsE A+ L — B+ R+ s+ LB —r %)

— A+ ESE — B — BB+ B+ 30 E =B+ 18]

+& [d2a3a4 A+ r80+r 0+ rOURIE + 38 R+ 18+ BB

+1[d2d3dafigfEr A+ e+ e+ — 3B+ %) — rEre)

+1[d2d3da FEFEFRA+ O+ 1580+ 15 . (A3)

All the integrals in Eqgs. (A1) and (A2) can be determined analytically or numerically via a one-dimensional integral.
These are given as

ay=—1+3)7; (A4)
ag =—43%; (A5)
(1+2)? L], 4 ) , (1+32)2 | . > 3. ——<
=g |—T= _ = —nTl —=— |+=3V
a,=8 2 2+ —(1+32)) |2 2 15 3) V122
2 —
230423724+ 28 2 gp feos 10 —x VT UEE feosm1(5) -y v T2 | (A6)
T T Y(1+32)/2 4
with
_r2—(1+3)%/4+1 _r2+(1+3)2/4—1
X = y YT 5 (A7)
2r r(1+3)
2 —
2 2 JER— —
ap =8 M_zl +§Z122+1_6f2 drr (lil—[cos_l(x)—x\/l—x2]+22[cosﬁ1(y)—-y\/l—y2] ,
4 T T Yu+3)2 4
(A8)
with
_r’+a+3y/4—3* _ r*—(1+3)*/4+3? (A9)
r(1+3) i s :

Only a few of integrals appearing in Eq. (A3) may be determined in this way. Instead, we evaluate this coefficient as a
function of X via a Monte Carlo integration scheme that samples points in space randomly. Values of these coefficients
as functions of 2 are given in Table II.

TABLE II. Coefficients of the density expansion of ®, given in Eq. (6) for various values of the
spreading magnitude 3.

) aq Ay [ ag ap ag
1.0 —4.000 3.308 1.407 0 0 0

1.1 —4.410 4.080 1.793 —4.840 5.324 1.739
1.2 —4.840 5.101 2.348 —5.760 8.231 1.964
1.3 —5.290 6.421 2.463 —6.760 12.244 0.479
1.4 —5.760 8.089 2.375 —7.840 17.595 —2.737
1.5 —6.250 10.161 2.231 —9.000 24.548 —9.953

1.6 —6.760 12.695 1.887 —10.240 33.363 —22.507
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